Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 7 results ...

Choi, C Y and Honda, R (2019) Motive and conflict in the disaster recovery process. International Journal of Disaster Resilience in the Built Environment, 10(05), 408–19.

Firouzi Jahantigh, F and Jannat, F (2019) Analyzing the sequence and interrelations of Natech disasters in Urban areas using interpretive structural modelling (ISM). International Journal of Disaster Resilience in the Built Environment, 10(05), 392–407.

Kashem, S B (2019) Housing practices and livelihood challenges in the hazard-prone contested spaces of rural Bangladesh. International Journal of Disaster Resilience in the Built Environment, 10(05), 420–34.

Maal, M and Wilson-North, M (2019) Social media in crisis communication – the “do’s” and “don’ts”. International Journal of Disaster Resilience in the Built Environment, 10(05), 379–91.

Ongkowijoyo, C S, Doloi, H and Mills, A (2019) Participatory-based risk impact propagation and interaction pattern analysis using social network analysis. International Journal of Disaster Resilience in the Built Environment, 10(05), 363–78.

Pamungkas, A and Purwitaningsih, S (2019) Green and grey infrastructures approaches in flood reduction. International Journal of Disaster Resilience in the Built Environment, 10(05), 343–62.

Rautela, P, Joshi, G C and Ghildiyal, S (2019) Economics of seismic safety for earthquake-prone Himalayan province of Uttarakhand in India. International Journal of Disaster Resilience in the Built Environment, 10(05), 317–42.

  • Type: Journal Article
  • Keywords: Uttarakhand; Damageability; Lifeline buildings; Rapid visual screening (RVS); Seismic gap; Seismic vulnerability; Earthquake; Himalaya;
  • ISBN/ISSN: 1759-5908
  • URL: https://doi.org/10.1108/IJDRBE-02-2019-0007
  • Abstract:
    The purpose of this study is to estimate the cost of seismic resilience of identified vulnerable lifeline public buildings in earthquake-prone Himalayan province of Uttarakhand in India. Design/methodology/approach Built area of the identified vulnerable lifeline buildings together with prevalent rate of construction has been considered for assessing the cost of seismic resilience while improvised rapid visual screening (RVS) technique, better suited to the built environment in the region, has been used for assessing seismic vulnerability. Findings Investment of US$250.08m is assessed as being required for ensuring seismic safety of 56.3, 62.1, 52.9, 64.6, 71.9 and 61.7% surveyed buildings, respectively, of fire and emergency services, police, health, education, local administration and other departments that are to become non-functional after an earthquake and result in a major socio-political turmoil. A total amount of US$467.71m is estimated as being required for making all the buildings of these departments seismically resilient. Research limitations/implications Actual investment estimates and reconstruction/retrofitting plans have to be prepared after detailed investigations as RVS technique only provides a preliminary estimate and helps in prioritising buildings for detailed investigations. Practical implications This study is intended to provide a snapshot of the state of seismic vulnerability together with the financial resources required for corrective measures. This is to help the authorities in planning phased mobilisation of financial and technical resources for making the built environment seismically resilient. Social implications This study is to bring forth awareness on this important issue and consequent public opinion in favour of safety of public facilities to ensure allocation of appropriate financial resources together with changes in techno-legal regime for the cause of earthquake safety. At the same time, this study is to motivate masses to voluntarily assess safety of their neighbourhood and undertake corrective measures. Originality/value This study is based on primary data collected by the authors.